ПЕРЦЕПЦИЈЕ ЧЕТВОРОСТРАНИКА СТУДЕНАТА СТУДИЈСКОГ ПРОГРАМА ЗА ОБРАЗОВАЊЕ ПРОФЕСОРА РАЗРЕДНЕ НАСТАВЕ 

Методички аспекти наставе математике IV (2021) (стр. 41-57)
 

АУТОР(И): Даниел А. Романо

Е-АДРЕСА:  bato49@hotmail.com

Download Full Pdf   

DOI: 10.46793/MANM4.041R

САЖЕТАК:

Ово истраживање имало је за циљ стицање увида у перцепције студената студијског програма за образовање професора разредне наставе (учитеља) о четвоространицима и класификацији четвоространика. У том циљу тестирали смо 63 студента треће и четврте године два педагошка факултета у БиХ. На основу повратних информација, овај истраживач је склон формирању слутње/хипотезе да ова тестирана популација има знатних поте- шкоћа са детерминисањем четвоространика и њиховом класификацијом. Ова иницијална студија нам сугерише закључак да су заблуде које имају ученици нижих разреда са овом геометријском фигуром последица заблуда које о њој имају њихови наставници. Ако прихватимо овакву констатацију и ако је проширимо на читаву наставу геометрије у таквим школама, онда долазимо до претпоставке да је недовољан развој геометријског мишљења („ниво 1” по Ван Хилеовој класификацији) код ученика последица недовољних математичких и методичких знања, али и недовољно развијених способности њихових наставника да разумију процесе подучавања и ученичког учења. Дакле, проблеме наставе геометрије у нижим разредима основне школе би требало сагледавати пребацивањем фокуса са ученика на њихове наставнике.

КЉУЧНЕ РЕЧИ:

четвоространици, класификација четвоространика, студен- ти учитељског програма.

ЛИТЕРАТУРА:

Aktas, D. Y., Aktas, M. C. (2012). Eighth grade students’ understanding and hierarchical classification of quadrilaterals, Elementary Education Online, 11(3), 714–728.

Aktas, M. C., Aktas, D. Y. (2012). Students’ understanding of quadrilaterals: The sample of parallelogram, Journal of Research in Education and Teaching, 1(1), 319–329.

Aytekin, C., Toluk Ucar, Z. (2011). Teachers’ definition of square, rectangle, parallelogram and trapezoid, In: B. Uduz, Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1, Middle East Technical University, Ankara, Turkey: PME.

Ball, D. L., Sleep, L. (2007). What is mathematical knowledge for teaching, and what are features of tasks that can be used to develop MKT? Presentation at the Center for Proficiency in Teaching Mathematics precession at the meeting of the Association of Mathematics Teacher Educators, Irvine, CA, January 25, 2007.

Ball, D., Bass, H., Sleep, L., Thames, M. (2005). A theory of mathematical knowledge for teaching, Paper prepared for work session at the 15th ICMI Study Conference The Professional Education and Development of Teachers of Mathematics, Aguas de Lindoia, Brazil.

Brunheira, L., Da Ponte, J. P. (2016). Prospective teachers work on defin- ing quadrilaterals through an exploratory approach, Didactica Mathermaticae, 38, 33–56.

Budiarto, М. Т., Rahaju, Е. B., Hartono, S. (2017). Students’ abstraction in re-cognizing, building with and constructing a quadrilateral, Educational Research and Reviews, 12(7), 394–402.

Crvenković, S., Milovanović, M., Romano, D. A. (2012). Neke dileme i pi- tanja koja se prirodno pojavljuju pri uvođenje pojma ’ugao’ u nižim razredima osnovne škole; IMO – Istraživanje matematičkog obrazovanja, Vol. IV, Br. 7, 17–30.

Црвенковић, Ц., Миловановић, М., Романо, Д. А. (2012а). Упоредна анализа природе математичких знања које се користи и конструише у учионици, Норма, 17(2), 133–154.

Çontay, E. G., Duatepe-Paksu, A. (2012). Preservice Mathematics Teachers’ understandings of the class inclusion between kite and square, Procedia – Social and Behavioral Sciences, 55, 782–788.

Currie, P., Pegg, J. (1998). Investigating students’ understanding of the rela- tionships among quadrilaterals, In: C. Kanes, M. Goos, E. Warren (Eds.), Teaching Mathematics in New Times; Proceedings of the Twenty First Annual Conference of   the Mathematics Education Research Group of Australasia Incorporated, Vol. 2, 177– 184, Gold Coast, Australia, 5–8 July 1998. Griffith Uni Print, Brisbane, Australia, ISNB: 0-9596844-7-6.

De Villiers, M. (1994). The role and function of a hierarchical classification of quadrilaterals, For the Learning of Mathematics, 14, 11–18.

Duatepe-Paksu, A., Pakmak, G. S., Iymen, E. (2012). Pre-service Elementary Teachers’ Identification of Necessary and Sufficient Conditions for A Rhombus, Procedia – Social and Behavioural Sciences, 46, 3249–3253.

Fujita, T. (2012). Learners’ level of understanding of inclusion relations of quadrilaterals and prototype phenomenon, The Journal of Mathematical Behaviour, 31, 60–72.

Fujita, T., Jones, K. (2007). Learners’ understanding  of  the  definitions and hierarchical classification of quadrilaterals: towards a theoretical framing, Research in Mathematics Education, 9(1&2), 3–20.

Marković, Z., Romano, D. A. (2013). Gaining insight of how do elementary school’s students in the Republic of Srpska conceptualize geometric shape of par- allelogram, IMVI Open Mathematical Education Notes, 3, 31–41.

Monaghan, F. (2000). What difference does it make? Children’s views of  the differences between some quadrilaterals, Educational Studies in Mathematics, 42(2), 179–196.

Okazaki, M., Fujita, T. (2007). Prototype phenomen and common cog- nitive paths in the understanding of the inclusion relations between quadri- laterals in Japan and Scotland, In: J. H. Woo, H. C. Lew, K. S. Park, D. Y. Seo (Eds.), Proceedings 31st Conference of the International Group for the Psychology of Mathematics Education, Vol. 4, Seoul: PME, 41–48.

Ozdemir Erdogan, E., Dur, Z. (2014). Pre-service mathematics teachers’ per- sonal figural concepts and classifications about quadrilaterals, Australian Journal of Teacher Education, 39(6), 107–133.

Pickreign, J. (2007). Rectangle and rhombi: How well do pre-service teach- ers know them?, IUMPST – Issues in the Undergraduate Mathematics Preparation оf School Teachers, 1, 1–7.

Rianasari, V. F., Julie, H., Sulistyani, N. (2016). Primary teachers’ under- standing of the inclusion relation of quadrilaterals, In: Proceedings of the 2nd International Conference on Education and Training – Improving The Quality of Education and Training Through Strengthening Networking, Faculty of Education, State University of Malang, East Java, Indonesia, 933–935.

Романо, Д. А. (2009). O геометријском мишљењу, Настава математике, LIV (2–3), 1–11.

Romano, D. A., Vinčić, V. (2010). Uvid u studentsko razumijevanje paralel- nih i mimoilaznih pravih, Nastava matematike, LV (3–4), 1–7.

Romano, D. A. (2011). Jedno utvrđivanje matematičkih kompetencija stude- nata učiteljskog programa, Nastava matematike, LVI (1–2), 8–18.

Romano, D. A., Vinčić, D. A. (2013). Šta je duž – jedno istraživanje aspekata budućih učitelja, Naša škola, 63(233), 139–156.

Романо, Д. А. (2017). Перцепције геометријског концепта правоугаоника студената учитељског програма, Иновације у настави, 30(2), 158–171.

Türnüklü, R., Akkaş, E. N., Alaylı, F. G. (2013). Mathematics Teachers’ Perceptions of Quadrilaterals and Understanding the Inclusion Relations, In:

  1. Ubuz, Ç. Haser, M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of  the European Society for Research in Mathematics Education, Ankara: Middle East Technical University, 705–714.

Türnüklü, E. (2014). Construction of inclusion relations of quadrilaterals: Analysis of pre-service elementary mathematics teachers’ lesson plans, Education and Science, 39(173), 198–208.

Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics, In: D. Tall (Ed.), Advanced Mathematical Thinking, Mathematics Education Library, Vol 11, Springer, Dordrecht, 65–81.

Usiskin, Z., Griffin, J., Witonsky, D., Willmore, E. (2008). The classification  of quadrilaterals: A study in definition, Charlotte, NC: Information Age Publishing.