INFLUENCE OF QUERCETIN ON THE BINDING OF TIGECYCLINE TO HUMAN SERUM ALBUMIN

1st International Conference on Chemo and BioInformatics, ICCBIKG  2021, (363-366)

AUTHOR(S) / АУТОР(И): Emina Mrkalić, Marina Ćendić Serafinović, Ratomir Jelić, Stefan Stojanović, Miroslav Sovrlić

E-ADRESS / Е-АДРЕСА: emina.mrkalic@pmf.kg.ac.rs, marina.cendic@pmf.kg.ac.rs, rjelic@uni.kg.ac.rs, sstojanovic1987@gmail.com, msovrlic@medf.kg.ac.rs

Download Full Pdf   

DOI: 10.46793/ICCBI21.363M

ABSTRACT / САЖЕТАК:

Serum albumin is the major soluble protein in the circulatory system of humans. The metabolism of drugs, their distribution, free concentration, and efficacy depend on the drug-serum albumin interaction [1]. Accordingly, it is important to study the interactions of drugs with serum albumin, which determines the pharmacology and pharmacodynamics of drugs. Quercetin (QUE), a natural polyphenol widely distributed in many plant foods, such as fruits, vegetables, nuts, seeds, grains, and tea [2], bind to serum albumin  [3]. Tigecycline  (TGC), is a tetracycline  antibiotic widely used  in the treatment  of bacterial infections [4]. This study aimed to investigate the binding properties of TGC to HSA in the presence of QUE, under physiological conditions, by fluorescence spectroscopy.

KEY WORDS / КЉУЧНЕ РЕЧИ:

human serum albumin, interactions, tigecycline

REFERENCES / ЛИТЕРАТУРА:

  • M. Ishtikhar. G. Rabbani. R.H. Khan, Interaction of 5-fluoro-5′-deoxyuridine with human serum albumin under physiological and non-physiological condition: A biophysical investigation, Colloid Surf. B 123 (2014) 469-477.
  • A. Kandaswami, L.T. Lee, P.P. Lee, J.J. Hwang, F.C. Ke, Y.T. Huang, et al., The antitumor activities of flavonoids, InVivo 19 (2005) 895–909.
  • T.J. Mabry, K.R. Markham, M.B. Thomas, Springer-Verlag, Berlin, Heidelberg, New York. 1970.Kasbekar, Tigecycline: a new glycylcycline antimicrobial agent, Am J Health Syst Pharm. 63 (13) (2006) 1235–1243.G. Sudlow, D.J. Birkett, D.N. Wade, The Characterization of Two Specific Drug Binding Sites on Human Serum Albumin, Mol. Pharmacol. 11 (1975) 824-832.G. Sudlow, D.J. Birkett, D.N. Wade, Further characterization of specific drug binding sites on human serum albumin, Mol. Pharmacol. 12 (1976) 1052–1061.
  • S.D. Stojanovic, S.M. Jankovic, Z.D. Matovic, I.Z. Jakovljevic, R.M. Jelic, Interaction between tigecycline and human serum albumin in aqueous solution, Monatsh Chem 146 (2015) 399-409.
  • A.V. Anand David, R. Arulmoli, S. Parasuraman, Overviews of biological importance of quercetin: a bioactive flavonoid, Pharmacogn. Rev. 10 (2016) 84–89.
  • A. Crozier, I.B. Jaganath, M.N. Clifford, Dietary phenolics: chemistry, bioavailability and effects on health, Nat. Prod. Rep. 2009, 26, 1001-1043.
  • S.D. Stojanović, J.M. Nićiforović, S.M. Živanović, J.V. Odović, R.M. Jelić, Spectroscopic studies on the drug-drug interaction: the influence of fluoroquinolones on the affinity of tigecycline to human serum albumin and identification of the binding site, Monatsh. Chem. 151 (2020) 999-1007.
  • J.R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed. Springer, New York, (2006).
  • J.-H. Shi, Y.-Y. Lou, K.-L. Zhou, D.-Q. Pan, Elucidation of intermolecular interaction of bovine serum albumin with Fenhexamid: A biophysical prospect, Journal of Photochemistry & Photobiology B: Biology 180 (2018) 125–133, DOI: 10.1016/j.jphotobiol.2018.01.025.
  • Zhu, F. Yang, L. Chen, E.J. Meehan, M. Huang, A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography, J. Struct. Biol.162 (2008) 40- 49.
  • G.W. Zhang, Q.M. Que, J.H. Pan, J.B. Guo, Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy, J. Mol. Struct. 881 (2008) 132–138.
  • J.H. Shi, K.L. Zhou, Y.Y. Lou, D.Q. Pan, Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188 (2018) 362- 371.