THE DAMPENING OF LIPID DROPLET OSCILLATORY MOVEMENT IN NITROGEN STARVED FILAMENTOUS FUNGI BY A LOW DOSE OF MITOCHONDRIAL RESPIRATION INHIBITOR

1st International Conference on Chemo and BioInformatics, ICCBIKG  2021, (226-229)

AUTHOR(S) / АУТОР(И): Tanja Pajic, Miroslav Zivic, Mihailo D. Rabasovic, Aleksandar Krmpot, Natasa Todorovic

E-ADRESS / Е-АДРЕСА: tpajic@bio.bg.ac.rs, mzivic@bio.bg.ac.rs, rabasovic@ipb.ac.rs, krmpot@ipb.ac.rs, nara@ibiss.bg.ac.rs

Download Full Pdf   

DOI: 10.46793/ICCBI21.226P

ABSTRACT / САЖЕТАК:

Lipid droplets (LDs) are small mobile organelles conserved in all eukaryotic cells. We wanted to test if the LD movement can be muffled by an incomplete inhibition of mitochondrial respiration, induced by treating hyphae of filamentous fungus Phycomyces blakesleeanus with 0.5 mM sodium azide. Nitrogen starved hyphae were used, in order to obtain LDs in larger sizes and numbers. The data obtained unequivocally showed: 1. Sodium azide treatment dramatically reduces the LD velocity and the distances LDs travel; 2. LDs in both controls and in azide-treated hyphae oscillate in a small confined space instead of travelling through the cell; 3. Azide-treated LDs oscillate less frequently and in smaller confinement than controls.

KEY WORDS / КЉУЧНЕ РЕЧИ:

Sodium azide, Phycomyces blakesleeanus, In vivo microscopy, Nile Red

REFERENCES / ЛИТЕРАТУРА:

  • Meyers, T.M. Weiskittel, P. Dalhaimer, Lipid Droplets: Formation to Breakdown, Lipids, 52 (2017) 465-475.
  • S. Murphy, R.G. Parton, Lipid droplet-organelle interactions; sharing the fats, Biochim Biophys Acta, 1791 (2009) 441-7.
  • Stanić, J. Zakrzewska, M. Hadžibrahimović, M. Zižić, Z. Marković, Z. Vučinić, M. Zivić, Oxygen regulation of alternative respiration in fungus Phycomyces blakesleeanus: connection with phosphate metabolism. Research in Microbiology, 164 (2013) 770-8.
  • Miler, M.D. Rabasovic, M. Aleksic, A.J. Krmpot, A. Kalezic, A. Jankovic, B. Korac, A. Korac. Polarization-resolved SHG imaging as a fast screening method for collagen alterations during aging: Comparison with light and electron microscopy. Journal of Biophotonics, 14 (2021) e202000362.
  • Meijering, O. Dzyubachyk, I. Smal. Methods for Cell and Particle Tracking, Methods in Enzymology, 504 (2012) 183-200.
  • Pribasnig, B. Kien, L. Pusch, G. Haemmerle, R. Zimmermann, H. Wolinski, Extended- resolution imaging of the interaction of lipid droplets and mitochondria, Biochim Biophys Acta Molecular Cellular Biology of the Lipids, 1863 (2018) 1285-1296.
  • Targett-Adams, D. Chambers, S. Gledhill, R.G. Hope, J.F. Coy, A. Girod, J. McLauchlan, Live Cell Analysis and Targeting of the Lipid Droplet-binding Adipocyte Differentiation-related Protein. Journal of Biological Chemistry, 278 (2003) 15998–16007.
  • Jin, Z. Ren, Y. Tan, P. Zhao, J. Wu, Motility Plays an Important Role in the Lifetime of Mammalian Lipid Droplets, International journal of molecular sciences, 22 (2021) 3802.
  • B. Nguyen, J.A. Olzmann, Lipid droplets and lipotoxicity during autophagy, Autophagy, 13 (2017) 2002-2003.