1st International Conference on Chemo and BioInformatics, ICCBIKG 2021, (64-67)
AUTHOR(S) / АУТОР(И): Ivana Radojević, Aleksandar Ostojić, Nenad Stefanović
E-ADRESS / Е-АДРЕСА: ivana.radojevic@pmf.kg.ac.rs, aleksandar.ostojic@pmf.kg.ac.rs, nenad@pmf.kg.ac.rs
DOI: 10.46793/ICCBI21.064R
ABSTRACT / САЖЕТАК:
This study was performed using the SeLaR information system (IS). SeLaR IS combines relevant data on reservoirs in Serbia and enables advanced methods of analysis, such as statistical analysis and data mining. For the data analysis, three accumulations with different morphometric properties, trophic status, and dominant community of microorganisms were selected: Gruža, Grošnica, and Bovan. The material in this research is data sets that include standard routine and broader scientific hydrobiological tests of freshwater from certain periods. The data include physicochemical, biochemical, microbiological, and other biological parameters. The analysis aimed to determine the relationship between the entities, to discover unknown relations, the regularity in the dynamics of the specific characteristics, and for predictions. Classification, analysis of influential parameters, and scenario analysis were used for this analysis. The results indicate a clear classification of the values of the total number of bacteria. The obtained models have a small number of influential parameters (one to four) with a large relative impact for each class separately. Influence parameters are different for distinct accumulations. For prediction of the total number of bacteria selected tools did not provide satisfactory results for all three reservoirs.
KEY WORDS / КЉУЧНЕ РЕЧИ:
information system; reservoirs; the total number of bacteria; influential parameters, data mining.
REFERENCES / ЛИТЕРАТУРА:
- Kumar, J Alameda, P. Bajcsy, M. Folk, M. Markus, Hydroinformatics: Data Integrative Approaches in Computation. Analysis and Modeling. CRC Press, (2006) 534 pp.
- Gorunescu, Data Mining: Concepts, Models and Techniques. Intelligent Systems Reference Library, Springer – Verlag Berlin Heidelberg (2011). ISBN: 978-3-642-19720-8.
- C. Ogwueleka, F.N. Ogwueleka, Data mining application in predicting Cryptosporidium spp. oocysts and Giardia spp. cysts concentrations in rivers. Journal of Engineering Science and Technology, 5 (2010) 342-349.
- И.Д. Радојевић, Микробиолошки аспекти примене информационих система у мониторингу акумулација и језера, Докторска дисертација, Природно-математички факултет, Универзитет у Крагујевцу, (2012) 218
- Harts, Microsoft Office 2007 Bussines Intelligence, McGraw_Hill, (2008). ISBN-13: 978- 0071494243; ISBN-10: 0071494243.